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As a beginner of programming..

e Code is confusing Vv
e Don’t know if | can do programming.. Vv
e Don’t know what | can do with Python.. Reed
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| am here to share with you

“Six things | wish | had known a year ago

about Python Programming”
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(1) Need many packages (or modules)

import| XXX package import os -- operating system interface
import re - string processing

import csv -- csv file reading/writing
import nltk -- natural language processing

import|YYY > or
import|Z2ZZ module

import|statistics

statistics. mean|([1,2,3,4,5]) You may have to import many modules.

Don’t worry about it.

function / method
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(2) Directory matters

import os

os.getcwd() -- get current working directory

os.chdir(‘U:\\Big Data Camp’) -- change the current working directory
os.listdir() -- returns a list of sub directories and file in this path
os.mkdir(‘folderl’) -- make a new directory
os.rename(‘folderl’, ‘newfolder’) -- renaming a directory
os.rename(‘testl.txt’, ‘newname.txt’) -- renaming a file
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(3) Reading/writing a file needs a practice

A. Reading a file wordl word2 word3
open(‘namel.txt’) inel
list(open(‘namel.txt’)) ine2
. ine3
Import csv ‘word1\tword2\tword3’]
with open(‘namel.txt’, ‘r’) as f: line1\r, ‘line2\n’. line3’)

csv_read = csv.reader(f, delimiter=\t’)

for ain csv_read:

[‘wordl’, ‘word?2’, ‘word3’]
print(a[0:3])

[‘linel’, ‘line?’, ‘line3’]
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(3) Reading/writing a file needs a practice

wordl word2 word3 B. Writing a file
open(‘namel.txt’)
[‘word1\tword2\tword3’] list(open(‘namel.txt’))

with open(‘namel.txt’, ‘w’) as g:
g.write(‘hello’)

hello
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(4) Always write comments

# specify how many tweets | want
totalNumTweet = 10000

def writeResult (scores):

# example scores entry:

# {1 Uof M :{‘innovation’: {2015: 92, 2016: 93},
# ‘donation’: {2015: 85, 2016: 90} } }

Comments help you remember what your code is for.

Comments help you think clearly.
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(5) Googling is ok, actually very common and
recommended

* Try running your code as you write.
- when you encounter an error,
think about what could have been the problem.
- if you cannot figure out the problem by yourself, google!

* Online resources: Python tutorial, Stackoverflow
-There can be multiple answers to one question.
-It is still hard to figure out which answer is the best.

-Start with one answer that seems reasonable and which you can

understand the most.
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(6) It is like learning a foreign language

* |t takes a long time

* You need to learn grammars, vocabularies, sentence structures, etc.
* There are many ways of writing codes

 Compare your codes with other people’s codes

e You have to practice a lot (trial and error)

* Talk with other people who use Python or who do programming

* Think about why you want to learn Python

* If you like it, you learn fast
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What | did after Big Data Camp

(1) Took class: Ling 441 ‘Computational Linguistics’
(2) Tried using Python instead of Excel! i%

(3) Used Python and API for my research project
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Natural Language Processing
for Understanding Big Data

Reed Coke



What is Natural Language Processing (NLP)?

e Humans interact with each other using spoken, written, or sighed
natural language.
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What is Natural Language Processing (NLP)?

e Humans interact with each other using spoken and/or written natural
language.

 Computers interact with each other (ultimately) using binary.

* NLP is concerned with getting computers to translate from natural
language to binary and back.
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Outline

* Preparing data
e Cleaning and stemming
e Tokenizing with NLTK

 Examples and tools
e Sentiment analysis
e Topic modeling
e Word embeddings



NLP is hard
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NLP is hard

e Cat, cat, cats
e catty, cattle, cataract, catacomb

e kitten, kitty, persian, tabby
* Mittens, Tiger, Garfield, Mr. Whiskers
e gato, chat, katze, &

* And that’s just cat



Outline

e Why is NLP hard?

e Cleaning and stemming
e Tokenizing with NLTK

 Examples and tools
e Sentiment analysis
e Topic modeling
e Word embeddings



Preparing Data — Cleaning

* As we can see, real data are very messy.
 There are a few common strategies that can help a lot

e Simple cleaning:
* Removing punctuation
* Lowercasing

e Stemming:
e run/runs/running -> run



Preparing Data - Tokenization

e Tokenization is an extremely important aspect of real NLP

e |t's often critical to break a document down into sentences
e See spot run. Run spot run. -> [‘See spot run’, ‘Run spot run’]
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Preparing Data - Tokenization

e Tokenization is an extremely important aspect of real NLP

e |t’s often critical to break a document down into sentences
e See spot run. Run spot run. -> [‘See spot run’, ‘Run spot run’]
e Dr. Radev got his Ph.D. from Columbia University in N.Y.C.

* It’s almost always critical to break a document down into words

e How do you handle contractions like “don’t”?
e How do you handle “Ph.D.”? “N.Y.C.”?

* This is where the natural language toolkit (NLTK) comes in



Preparing Data - NLTK

 NLTK has a wide variety of NLP tools, including a straightforward
connection to tools from many other NLP groups such as Stanford

* | won’t get into details, but using most of these tools can be reduced
to just a few lines of Python with NLTK.

* | highly recommend NLTK


http://www.nltk.org/

Outline

e Why is NLP hard?

* Preparing data
e Cleaning and stemming
e Tokenizing with NLTK

e Summarizing a dataset
e Sentiment analysis

e Topic modeling

e Word embeddings
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Summary Statistics

* NLP is heavily data-driven
* Think about how long it takes children to learn language

* Depending on the sophistication, you may require hundreds or
thousands of documents to be able to use modern NLP tools

* As humans, we will need some kind of summary statistics to
understand a corpus of this magnitude



Summary Statistics - Example
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Summary Statistics - Example

Number of
Tokens
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Unique Words

(types)

Types per Token
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Summary Statistics - Takeaway

e Words/sentence can give a reasonable measure of language
complexity

* Types/token can give a decent measure of vocabulary breadth
* These results depend heavily on cleaning and tokenization!



Word It Out
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https://www.jasondavies.com/wordcloud/
http://worditout.com/word-cloud/
http://wordsift.org/
https://chrome.google.com/webstore/detail/word-cloud-generator/alhnlhbhnklajhmccemipdbaifocepab?hl=en
http://www.danielsoper.com/wordcloud/

Named Entity Recognition

 NER tools allow you to extract entities present in a text

 PERSON, ORGANIZATION, LOCATION (MUC3)
* TIME, DATE, MONETARY VALUE, PERCENTAGE (MUC7)



Named Entity Recognition - Example
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Named Entity Recognition - Takeaway

| suggest the Stanford tool and NTLK

* Important to batch process
 Run time went from 10 days to 5 minutes

o After you identify all the entities, you may need to combine some
e Bilbo, Baggins, Bilbo Baggins
e Strider, Aragorn

e As always, there will be errors
e Shadowfax saw Gandalf (tagged as one entity)


http://textminingonline.com/how-to-use-stanford-named-entity-recognizer-ner-in-python-nltk-and-other-programming-languages

Sentiment Analysis

e Sentiment analysis is one of the major applications of current NLP

technology.
g 10/21/2015

£ 1 check-in

Zingermans was recommended by a friend of mine who
went to the University of Michigan for her undergrad, and
boy am | glad that | listened to her!

3186 out of 4960 people found the following review useful;

It is not a sequel, but a remake

Author: sonofhades (sonofhades@hotmail com) from Earth, 3rd planet of system Sol
16 Decamber 2015

*** This review may contain spoilers ***

5.0 out of 5stars o April 24, 2013

This shirt has changed my life! Before, | couldn't walk through the aisles at Wal-Mart, graze on the buffet at Sizzler, or even
take in a round at my local miniature golf course, without people pointing and saying, "Hey, you're that Zulu guy from Star
Wars, aren't you?" Even if | wore sunglasses, I'd still get mistaken for Yoko Ono.



Sentiment Analysis

e Sentiment analysis is one of the major applications of current NLP
technology.

* The field has recently seen strong advances due to Deep Learning.
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Sentiment Analysis - Example

Overall
Average
Sentiment

Sentiment
Standard
Deviation




Sentiment Analysis - Takeaway

e | suggest the new Stanford tool

e Be wary of domain differences!
e She’s a great athlete and she was not afraid to be aggressive.
e This is a terrible restaurant. The wait staff were very aggressive.
e Best to have a model that is trained on the same domain


http://nlp.stanford.edu/sentiment/

Topic Modelling

* Topics models are a great way to explore a corpus

e Generative model of document creation
e Each document is a weighted combination of topics
e Each topic is a weighted combination of words
e All words appear in all topics with some (small) probability

* To add a word to a document

* Pick a topic according to the documents weighted composition
e Pick a word according to that topic’s weighted composition
e Add the chosen word

e LDA is one of several methods for reversing this process to discover
the topics that make up a document



Topic Modelling - Example

1. 0.009*upon + 0.008*away + 0.007*came + 0.007*lay

2. 0.007*now0.034*said + 0.017*n't + 0.012*Sam + 0.012*will +
0.011*Frodo

3. 0.011*came + 0.011*'l + 0.008*long + 0.008*great + 0.007*0Orcs

4. 0.010*eyes + 0.008*great + 0.008*looked + 0.008*Sam +
0.008*seemed

5. 0.010*great + 0.006*name + 0.005*Morgoth + 0.005*strength +
0.005*power



Topic Modelling - Takeaway

e Straightforward, though somewhat tedious, with Gensim

* In my opinion, not reliable for classification but good for exploration
* Not all topics will be logical for a human
* Results strongly depend on number of topics (hyperparameter)


http://christop.club/2014/05/06/using-gensim-for-lda/

Word Embeddings

ting word embeddings

great tool for genera

e Gensim’s Word2Vec is a



https://radimrehurek.com/gensim/
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https://radimrehurek.com/gensim/
http://rare-technologies.com/word2vec-tutorial/

Word Embeddings — Example uses

* One of these things doesn’t belong

e [Bilbo, Frodo, Sam, Merry, Pippin] -> Bilbo
 Numerical similarity of word pair

e (ghost, spirit) -> 0.711402184978

* Most similar words
* bread -> butter, cream, hot, dried
e lembas -> mastery, maker, waybread, Dragons



Word Embeddings - Takeaway

e Flexible, useful way to represent word semantics

* Lots of pretrained models available for download

e Best to train your own, provided you have enough data
e You may need quite a bit of data


https://www.quora.com/Where-can-I-find-some-pre-trained-word-vectors-for-natural-language-processing-understanding

NLP and You

 Modern tools make it very practical to include NLP in any project
 NLTK and Gensim are good tools focused on simplicity and easy of use

* All the code | wrote for my analysis is available on GitHub, complete
with a wiki to help you install support tools

e Github name: reedcoke

* Feel free to contact me with any questions — reedcoke@umich.edu


https://github.com/reedcoke/bigDataCamp2016
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